The effect of fishing on hysteresis in Caribbean coral reefs

Description
Coral resilience is important for withstanding ecological disturbances as well as anthropogenic changes to the environment. However, the last several decades have demonstrated a decline in resilience that has often resulted in phase shifts to a degraded coral-depleted state with high levels of algal abundance. A major defining issue in current research is to identify when and how it is possible to reverse these phase shifts allowing for the ecosystem to escape coral depletion and maintain coral-based ecosystem services. We extend an analytic model to focus on the effects of over-harvesting of herbivorous reef fish in the Caribbean by explicitly including grazer dynamics which introduces feedbacks between habitat and grazer abundance posing constraints on management options excluded in previous studies. This allows us to develop ecosystem-based management recommendations for two distinct scenarios of coral reef recovery: The first follows significant habitat damage in response to a large disturbance and the second maintains reef structure but has suffered from events such as coral bleaching. We identify critical fishing effort levels to allow for coral recovery and demonstrate that regions exhibiting severe damage to reef structure have little resilience implying that fishing reductions should be coupled with other restoration methods. Regions that are coral-depleted but maintain reef structure allow for recovery given sufficiently small levels of fishing mortality. However, we demonstrate the difference in recovery time in response to varying levels of control efforts on fishing.

In collections

File details
ID Label Size Mimetype Created
OBJ Blackwood_2012.pdf 363.85 KiB application/pdf 2015-11-18
FULL_TEXT Blackwood_2012.txt 42.99 KiB text/plain 2015-11-18
TN TN 3.58 KiB image/jpeg 2015-11-18